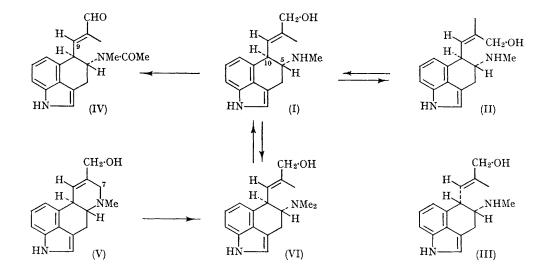
The Stereochemistry of Chanoclavine-I and Isochanoclavine-I

By W. ACKLIN, T. FEHR, and D. ARIGONI

(Organisch-chemisches Laboratorium, Eidgenössische Technische Hochschule, Zürich, Switzerland)


THE recent discovery¹ of two further isomers of chanoclavine,² together with considerations of their possible role in the biosynthesis of ergot alkaloids, has focussed attention on the stereochemistry of these compounds. The absolute configuration of chanoclavine-I (I), at C-5 and C-10, has already been defined by a correlation² with festuclavine.^{3,4}

Assignment of structures (II) and (III) for isochanoclavine-I and chanoclavine-II, respectively, as well as of the substitution pattern about the isolated double bond in (I) rests exclusively on comparison of n.m.r. data.¹ We now report experiments which establish the correctness of structures (I) and (II).

First, additional spectroscopic evidence was secured by oxidation of the N-acetyl derivative of $(I)^2$ with MnO₂ in acetone to form the aldehyde (IV), m.p. 209°, $[\alpha]_{\rm D}$ -108° (CHCl₃), having $\lambda_{\rm max}$ 227 m μ (log ϵ 4.20 in ethanol after substraction of the indole chromophore), in which the olefinic proton at C-9, τ 3.4 (CHCl₃), is clearly *cis* to the carbonyl group.⁵ Final proof for the substitution pattern about the double bond of (I) was obtained

converted by alkaline hydrolysis into a compound identical in all respects with natural chanoclavine-I. Since the geometry of the double bond is known to be preserved in the course of similar reductive cleavages,⁸ a *cis*-relationship of the CH₂·OH group and the olefinic proton of (I) is established.

Irradiation of (I) in t-butyl alcohol with a lowpressure mercury lamp gave a mixture containing roughly equal amounts of (I) and (II), from which

as follows. Cleavage of the methiodide from elymoclavine (V) with sodium in liquid ammonia⁶ with or without added methanol gave, after chromatographic separation, a 70% yield of Nmethyl-6,7-seco-elymoclavine (VI), m.p. 162°, $[\alpha]_{\rm p}$ -127° (CHCl₃), identical in all respects with the monomethylation product of (I). The O-acetylderivative of (VI) afforded on demethylation with diethylazodicarboxylate in ether7 the O-acetyl derivative of (I), m.p. 111°, $[\alpha]_D - 160^\circ$ (CHCl₃),

pure isochanoclavine-I (II),¹ m.p. 190°, $[\alpha]_D - 208^\circ$ (pyridine), could be isolated in 30% yield. A similar mixture was obtained on irradiation of (II). Thus, chanoclavine-I and isochanoclavine-I have the same configuration at C-5 and C-10 and differ only in the relative positions of CH2.OH and olefinic proton. The reversible isomerisation (I) \rightleftharpoons (II) is likely to occur by an intramolecular energy transfer mechanism (cf. ref. 9).

(Received, October 5th, 1966; Com. 745.)

¹ D. Stauffacher and H. Tscherter, Helv. Chim. Acta, 1964, 47, 2186.

² A. Hofmann, R. Brunner, H. Kobel, and A. Brack, Helv. Chim. Acta, 1957, 40, 1358.

³ E. Schreier, Helv. Chim. Acta, 1958, 41, 1984.

⁷O. Diels and E. Fischer, Ber., 1914, 47, 2043; cf. G. W. Kenner and R. J. Stedman, J. Chem. Soc., 1952, 2089.

⁸ K. W. Greenlee and V. G. Wiley, *J. Org. Chem.*, 1962, **27**, 2304. ⁹ A. A. Lamola, P. A. Leermakers, G. W. Byers, and G. S. Hammond, *J. Amer. Chem. Soc.*, 1965, **87**, 2322; H. Morrison, ibid., p. 932.

⁴ H. G. Leemann and S. Fabbri, Helv. Chim. Acta, 1959, 42, 2696; P. A. Stadler and A. Hofmann, ibid., 1962, 45, 2005.

⁵ L. M. Jackman, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," Pergamon Press, 1959, pp. 61, 119.

⁶S. Bhattacharji, A. J. Birch, A. Brack, A. Hofmann, H. Kobel, D. C. C. Smith, H. Smith, and J. Winter, J. Chem. Soc., 1962, 421.